铁素体不锈钢焊管焊接方法是什么

2024-05-07 10:42:39 (11分钟前 更新) 169 3116

最新回答

铁素体不锈钢管焊接特点和方法是什么?  
答:
一)铁素体不锈钢管焊接特点:
1)抗氧化性能好、成本低、抗应力腐蚀开裂性能比奥氏体不锈钢强;
2)在加热及冷却过程没有相变,不会产生淬火硬化;
3)被加热到950°C以上部分(焊缝及热影响区)晶粒长大十分严重,且不能用焊后热处理办法使粗大的晶粒细化,接头韧性降低;
4)  容易出现475°C脆;
5)焊接接头容易出现晶界腐蚀。
二)铁素体不锈钢管焊接方法:  
铁素体不锈钢的焊接方法
(一)  焊接材料。
   要求焊缝金属与母材有相同的导电、导磁及力学性能和表面色泽时应使用同材质的焊材,但其熔敷金属韧性太低,添加的Al与Ti等铁素体形成元素难以有效过渡到熔池中去,故该类焊材的应用受到一定限制。采用奥氏体焊接材料或镍基合金,可提高焊接接头的韧性,免除焊前预热和焊后热处理。
(二)焊接工艺。
   焊接材料与母材的化学成分相同时,须采取措施:焊前预热温度100~200℃,以使被焊材料处于韧性较好的状态和降低焊接接头的应力;随着铬含量的提高,预热温度也应相应提高。焊后对焊接接头进行750~800℃退火处理,使过饱和C和N完全析出,使铬充分补充到贫铬区,以恢复其耐蚀性及改善焊接接头塑性;退火后应快冷,以防止475℃脆性产生。采用小的热输入进行施焊,以减少高温脆化和475℃脆性的影响。若选用奥氏体不锈钢焊接材料,可免除焊前预热和焊后热处理;不含稳定元素的铁素体不锈钢焊接接头,其热影响区的粗晶脆化和晶间腐蚀问题不会因填充材料的改变而变化。奥氏体或奥氏体-铁素体焊缝金属基本上与铁素体不锈钢母材等强度;但在某些腐蚀介质中,该种异质焊接接头的耐腐蚀性可能低于同质接头。极低碳高铬铁素体不锈钢薄板焊前可不预热,焊后也无需热处理,但焊缝金属中C加N的含量不高于母材金属含量。
(三)焊接技巧。
   焊接材料不得污染;采用小焊接能量、较快的焊接速度等窄焊道焊接;使焊丝受热末端始终处于保护气体中;采用熔化极氩弧焊(MIG)、等离子氩弧焊(PAW)等先进焊接技术;熄弧后继续通保护气体,直至冷却充分;用高纯氩气保护焊接熔池;焊缝背面应采用惰性保护气体;采用水冷铜板,以减少过热,增加冷却速度。
铁素体不锈钢管焊接特点和方法是什么?  
答:
一)铁素体不锈钢管焊接特点:
1)抗氧化性能好、成本低、抗应力腐蚀开裂性能比奥氏体不锈钢强;
2)在加热及冷却过程没有相变,不会产生淬火硬化;
3)被加热到950°C以上部分(焊缝及热影响区)晶粒长大十分严重,且不能用焊后热处理办法使粗大的晶粒细化,接头韧性降低;
4)  容易出现475°C脆;
5)焊接接头容易出现晶界腐蚀。
二)铁素体不锈钢管焊接方法:  
铁素体不锈钢的焊接方法
(一)  焊接材料。
   要求焊缝金属与母材有相同的导电、导磁及力学性能和表面色泽时应使用同材质的焊材,但其熔敷金属韧性太低,添加的Al与Ti等铁素体形成元素难以有效过渡到熔池中去,故该类焊材的应用受到一定限制。采用奥氏体焊接材料或镍基合金,可提高焊接接头的韧性,免除焊前预热和焊后热处理。
(二)焊接工艺。
   焊接材料与母材的化学成分相同时,须采取措施:焊前预热温度100~200℃,以使被焊材料处于韧性较好的状态和降低焊接接头的应力;随着铬含量的提高,预热温度也应相应提高。焊后对焊接接头进行750~800℃退火处理,使过饱和C和N完全析出,使铬充分补充到贫铬区,以恢复其耐蚀性及改善焊接接头塑性;退火后应快冷,以防止475℃脆性产生。采用小的热输入进行施焊,以减少高温脆化和475℃脆性的影响。若选用奥氏体不锈钢焊接材料,可免除焊前预热和焊后热处理;不含稳定元素的铁素体不锈钢焊接接头,其热影响区的粗晶脆化和晶间腐蚀问题不会因填充材料的改变而变化。奥氏体或奥氏体-铁素体焊缝金属基本上与铁素体不锈钢母材等强度;但在某些腐蚀介质中,该种异质焊接接头的耐腐蚀性可能低于同质接头。极低碳高铬铁素体不锈钢薄板焊前可不预热,焊后也无需热处理,但焊缝金属中C加N的含量不高于母材金属含量。
(三)焊接技巧。
   焊接材料不得污染;采用小焊接能量、较快的焊接速度等窄焊道焊接;使焊丝受热末端始终处于保护气体中;采用熔化极氩弧焊(MIG)、等离子氩弧焊(PAW)等先进焊接技术;熄弧后继续通保护气体,直至冷却充分;用高纯氩气保护焊接熔池;焊缝背面应采用惰性保护气体;采用水冷铜板,以减少过热,增加冷却速度。
敏足一世 2024-05-07
手工焊
手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料。
这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚。
手工焊
手工焊是一种非常普遍的、易于使用的焊接方法.电弧的长度靠人的手进行调节,它决定于电焊条和工件之间缝隙的大小.同时,当作为电弧载体时,电焊条也是焊缝填充材料。
这种焊接方法很简单,可以用来焊接几乎所有材料.对于室外使用,它有很好的适应性,即使在水下使用也没问题.大多数电焊机可以TIG焊接.在电极焊中,电弧长度决定于人的手:当你改变电极与工件的缝隙时,你也改变了电弧的长度.在大多数情况下,焊接采用直流电,电极既作为电弧载体,同时也作为焊缝填充材料.电极由合金或非合金金属芯丝和焊条药皮组成.这层药皮保护焊缝不受空气的侵害,同时稳定电弧.它还引起渣层的形成,保护焊缝使它成型.电焊条即可是钛型焊条,也可是缄性的,这决定于药皮的厚度和成分.钛型焊条易于焊接,焊缝扁平美观.此外,焊渣易于去除.如果焊条贮存时间长,必须重新烘烤.因为来自空气的潮气会很快在焊条中积聚。
加菲慢半拍oO 2024-04-23
一)铁素体和奥氏体双相不锈钢管的焊接特点
     现代超低碳含氮双相不锈钢,钢中的足够的氮可促进焊接接头热影响区在高温下形成的单相铁素体冷却时,发生逆转变并形成足够的奥氏体,故焊接若影响区的塑、韧性较好,且抗应力腐蚀、点腐蚀的性能优良。其铁素体含量不应超过50%,以防止焊接时热影响区中铁素体过分长大和缩小形成单相铁素体组织的范围。双相不锈钢冷轧退火时需快速冷却通过980~700℃的温度范围,以防止焊接过程中形成有害的σ相、χ相和碳氮化合物,保证热影响区的力学性能和耐腐蚀性能。
   由于焊缝金属凝固和随后的冷却速度很快,焊缝若采用与母材相同的化学成分时,则在高温形成单相铁素体组织,来不及像母材那样在1050~1100℃保温并水淬处理,发生部分铁素体转变为奥氏体的过程。故焊材的镍含量要高于母材。
   焊缝在焊后自然冷却条件下,由于相对于母材熔池体积很小,冷却速度很快,熔化的金属焊缝沿热传导方向,向焊缝中心呈柱状、树枝状结晶,发生合金元素的偏析,组织不稳定,在随后的冷却过程中,易发生组织转变和析出金属间相。在正常的焊接参数和焊后自然冷却条件下,配套的焊材的焊缝金属可以达到要求的相比例(FN=30~70%);但采用较小的焊接热输入或焊缝截面厚,焊后冷却速度较快,焊缝中铁素体的转变来不及充分进行,则焊缝中的铁素体可能会超过70%;若热输入过大或填充的焊接材料较少,则可能加大母材的(熔化)稀释作用,从而降低焊缝金属的镍含量,使焊缝中的铁素体含量增高。若焊缝的铁素体含量较高,可采取固溶(1050~1100℃)处理,使焊缝金属的相比例较为理想。
二)铁素体和奥氏体双相不锈钢管的焊接方法:
     可用钨极氩弧焊(TIG)、熔化极氩弧焊(MIG)、等离子氩弧焊(PAW)及埋弧焊(SAW)等方法进行焊接。若焊件处于高应变状态或存在导致耐蚀性和塑、韧性降低的有害相变,则应进行固溶处理。23%Cr无Mo双相不锈钢和22%Cr双相不锈钢的固溶处理温度为1050~1100℃,而25%Cr双相不锈钢和超级双相不锈钢的固溶处理温度为1070~1120℃。当匹配的焊缝金属的化学成分(Ni=8~10%)高于焊件化学成分时,应选择给定的温度上限。快速感应后立即水淬。保温5~30min,以恢复相平衡,包括金属间相(σ和χ相)的溶解。需控制焊料飞溅物、杂质、氧化物的形成,以防耐点蚀和缝隙腐蚀性能的下降。焊后应清洗焊缝及周围区域;若不能清洗,则应控制保护气体的含氧量(10×10-6~25×10-6)。为了加强熔化极气体保护(GMAW)的电弧稳定性及金属渗透性,可在氩气中添加少量CO2。
一)铁素体和奥氏体双相不锈钢管的焊接特点
     现代超低碳含氮双相不锈钢,钢中的足够的氮可促进焊接接头热影响区在高温下形成的单相铁素体冷却时,发生逆转变并形成足够的奥氏体,故焊接若影响区的塑、韧性较好,且抗应力腐蚀、点腐蚀的性能优良。其铁素体含量不应超过50%,以防止焊接时热影响区中铁素体过分长大和缩小形成单相铁素体组织的范围。双相不锈钢冷轧退火时需快速冷却通过980~700℃的温度范围,以防止焊接过程中形成有害的σ相、χ相和碳氮化合物,保证热影响区的力学性能和耐腐蚀性能。
   由于焊缝金属凝固和随后的冷却速度很快,焊缝若采用与母材相同的化学成分时,则在高温形成单相铁素体组织,来不及像母材那样在1050~1100℃保温并水淬处理,发生部分铁素体转变为奥氏体的过程。故焊材的镍含量要高于母材。
   焊缝在焊后自然冷却条件下,由于相对于母材熔池体积很小,冷却速度很快,熔化的金属焊缝沿热传导方向,向焊缝中心呈柱状、树枝状结晶,发生合金元素的偏析,组织不稳定,在随后的冷却过程中,易发生组织转变和析出金属间相。在正常的焊接参数和焊后自然冷却条件下,配套的焊材的焊缝金属可以达到要求的相比例(FN=30~70%);但采用较小的焊接热输入或焊缝截面厚,焊后冷却速度较快,焊缝中铁素体的转变来不及充分进行,则焊缝中的铁素体可能会超过70%;若热输入过大或填充的焊接材料较少,则可能加大母材的(熔化)稀释作用,从而降低焊缝金属的镍含量,使焊缝中的铁素体含量增高。若焊缝的铁素体含量较高,可采取固溶(1050~1100℃)处理,使焊缝金属的相比例较为理想。
二)铁素体和奥氏体双相不锈钢管的焊接方法:
     可用钨极氩弧焊(TIG)、熔化极氩弧焊(MIG)、等离子氩弧焊(PAW)及埋弧焊(SAW)等方法进行焊接。若焊件处于高应变状态或存在导致耐蚀性和塑、韧性降低的有害相变,则应进行固溶处理。23%Cr无Mo双相不锈钢和22%Cr双相不锈钢的固溶处理温度为1050~1100℃,而25%Cr双相不锈钢和超级双相不锈钢的固溶处理温度为1070~1120℃。当匹配的焊缝金属的化学成分(Ni=8~10%)高于焊件化学成分时,应选择给定的温度上限。快速感应后立即水淬。保温5~30min,以恢复相平衡,包括金属间相(σ和χ相)的溶解。需控制焊料飞溅物、杂质、氧化物的形成,以防耐点蚀和缝隙腐蚀性能的下降。焊后应清洗焊缝及周围区域;若不能清洗,则应控制保护气体的含氧量(10×10-6~25×10-6)。为了加强熔化极气体保护(GMAW)的电弧稳定性及金属渗透性,可在氩气中添加少量CO2。
qiuqiuFreda 2024-04-20

扩展回答

热门问答

装修专题

页面运行时间: 0.15503311157227 秒