金卤灯散热用的是什么原理

2024-05-29 21:58:35 (15分钟前 更新) 395 7191

最新回答

金卤灯的工作原理与荧光灯基本相同,高电压通过灯丝激发电弧,电弧使灯泡内的气体发光发热,气体将随着电流的增强而变得更热更亮。实际上,如果情况得不到控制,灯泡极有可能融化。镇流器再次出场,稳定电流。与荧光灯主要区别是,荧光灯依靠含磷的化合物二次发荧光,而金卤灯通过气体发出白炽强光。金卤灯的镇流器不能用在荧光灯上,反之亦然。金卤灯镇流器利用三个原理启动灯泡。如果你的灯架上既有金卤灯MH,又有高输出荧光灯VHO,一定要把镇流器分开。好,现在我们已经了解了它们的工作原理,那么哪一个更好呢?事实上主要区别在于荧光灯是面光源,而金卤灯是点光源。
金卤灯的工作原理与荧光灯基本相同,高电压通过灯丝激发电弧,电弧使灯泡内的气体发光发热,气体将随着电流的增强而变得更热更亮。实际上,如果情况得不到控制,灯泡极有可能融化。镇流器再次出场,稳定电流。与荧光灯主要区别是,荧光灯依靠含磷的化合物二次发荧光,而金卤灯通过气体发出白炽强光。金卤灯的镇流器不能用在荧光灯上,反之亦然。金卤灯镇流器利用三个原理启动灯泡。如果你的灯架上既有金卤灯MH,又有高输出荧光灯VHO,一定要把镇流器分开。好,现在我们已经了解了它们的工作原理,那么哪一个更好呢?事实上主要区别在于荧光灯是面光源,而金卤灯是点光源。
枫桥夜泊123123 2024-05-29
工作原理
电弧管内充有汞、惰性气体和一种以上的金属卤化物。工作时,汞蒸发,电弧管内汞蒸气压达几个大气压(零点几个兆帕);卤化物也从管壁上蒸发,扩散进入高温电弧柱内分解,金属原子被电离激发,辐射出特征谱线。当金属离子扩散返回管壁时,在靠近管壁的较冷区域中与卤原子相遇,并且重新结合生成卤化物分子。这种循环过程不断地向电弧提供金属蒸气。电弧轴心处的金属蒸气分压与管壁处卤化物蒸气的分压相近,一般为  1330~13300Pa。通常采用的金属平均激发电位为4eV左右,而汞的激发电位为7.8eV。金属光谱的总辐射功率可以大幅度超过汞的辐射功率。结果,典型的金属卤化物灯输出的谱线主要是金属光谱。充填不同种金属卤化物可改善灯的显色性(平均显色指数Ra为70~95)。
 
汞电弧总辐射中仅有23%在可见光区域内,而金属卤化物电弧的总辐射则有50%以上在可见光区域内,灯的发光效率可高达120lm/W以上。  金属卤化物与电极、石英玻璃之间以及卤化物相互之间在高温下都会引起化学反应。金属卤化物容易潮解,极少量水的吸入可造成放电不正常,使灯管发黑。电极电子发射物质系采用氧化镝、氧化钇、氧化钪等,以防止发射物质与卤素发生反应。电弧管内有些金属(如钠)会迁移,结果会使卤素过量,导致卤素负电性极强,引起电弧收缩和启动电压、工作电压升高。金属卤化物灯仅靠触发电极的作用是不能可靠启动的,一般采用双金属片启动器,或者采用有足够高启动电压的漏磁变压器,也有采用电子触发器的。金属卤化物灯的点燃还需要限流器(即镇流器),其工作电流比同功率高压汞灯的要大一些。
工作原理
电弧管内充有汞、惰性气体和一种以上的金属卤化物。工作时,汞蒸发,电弧管内汞蒸气压达几个大气压(零点几个兆帕);卤化物也从管壁上蒸发,扩散进入高温电弧柱内分解,金属原子被电离激发,辐射出特征谱线。当金属离子扩散返回管壁时,在靠近管壁的较冷区域中与卤原子相遇,并且重新结合生成卤化物分子。这种循环过程不断地向电弧提供金属蒸气。电弧轴心处的金属蒸气分压与管壁处卤化物蒸气的分压相近,一般为  1330~13300Pa。通常采用的金属平均激发电位为4eV左右,而汞的激发电位为7.8eV。金属光谱的总辐射功率可以大幅度超过汞的辐射功率。结果,典型的金属卤化物灯输出的谱线主要是金属光谱。充填不同种金属卤化物可改善灯的显色性(平均显色指数Ra为70~95)。
 
汞电弧总辐射中仅有23%在可见光区域内,而金属卤化物电弧的总辐射则有50%以上在可见光区域内,灯的发光效率可高达120lm/W以上。  金属卤化物与电极、石英玻璃之间以及卤化物相互之间在高温下都会引起化学反应。金属卤化物容易潮解,极少量水的吸入可造成放电不正常,使灯管发黑。电极电子发射物质系采用氧化镝、氧化钇、氧化钪等,以防止发射物质与卤素发生反应。电弧管内有些金属(如钠)会迁移,结果会使卤素过量,导致卤素负电性极强,引起电弧收缩和启动电压、工作电压升高。金属卤化物灯仅靠触发电极的作用是不能可靠启动的,一般采用双金属片启动器,或者采用有足够高启动电压的漏磁变压器,也有采用电子触发器的。金属卤化物灯的点燃还需要限流器(即镇流器),其工作电流比同功率高压汞灯的要大一些。
哈毛小子 2024-05-22
金卤灯(Metal  Halide  Lamp)是交流电源工作的,在汞和稀有金属的卤化物混合蒸气中产生电弧放电发光的放电灯,金属卤化物灯是在高压汞灯基础上添加各种金属卤化物制成的第三代光源。照明采用钪钠型金属卤化物灯,该灯具有发光效率高、显色性能好、寿命长等特点,是一种接近日光色的节能新光源,广泛应用于体育场馆、展览中心、大型商场、工业厂房、街道广场、车站、码头等场所的室内照明。  工作原理  电弧管内充有汞、惰性气体和一种以上的金属卤化物。工作时,汞蒸发,电弧管内汞蒸气压金卤灯达几个大气压(零点几个兆帕);卤化物也从管壁上蒸发,扩散进入高温电弧柱内分解,金属原子被电离激发,辐射出特征谱线。当金属离子扩散返回管壁时,在靠近管壁的较冷区域中与卤原子相遇,并且重新结合生成卤化物分子。这种循环过程不断地向电弧提供金属蒸气。电弧轴心处的金属蒸气分压与管壁处卤化物蒸气的分压相近,一般为  1330~13300Pa。通常采用的金属平均激发电位为4eV左右,而汞的激发电位为7.8eV。金属光谱的总辐射功率可以大幅度超过汞的辐射功率。结果,典型的金属卤化物灯输出的谱线主要是金属光谱。充填不同种金属卤化物可改善灯的显色性(平均显色指数Ra为70~95)。汞电弧总辐射中仅有23%在可见光区域内,而金属卤化物电弧的总辐射则有50%以上在可见光区域内,灯的发光效率可高达120lm/W以上。  金属卤化物与电极、石英玻璃之间以及卤化物相互之间在高温下都会引起化学反应。金属卤化物容易潮解,极少量水的吸入可造成放电不正常,使灯管发黑。电极电子发射物质系采用氧化镝、氧化钇、氧化钪等,以防止发射物质与卤素发生反应。电弧管内有些金属(如钠)会迁移,结果会使卤素过量,导致卤素负电性极强,引起电弧收缩和启动电压、工作电压升高。金属卤化物灯仅靠触发电极的作用是不能可靠启动的,一般采用双金属片启动器,或者采用有足够高启动电压的漏磁变压器,也有采用电子触发器的。金属卤化物灯的点燃还需要限流器(即镇流器),其工作电流比同功率高压汞灯的要大一些。  发光过程  金卤灯内充有少量金属卤化物和气体,从触发到正常发光需一分多钟,大致分为三阶段。  1.触发阶段:金属卤化物灯内无灯丝,只有两个电极,直接加上工作电压不能点燃,必须先加高压使灯内气体电离。高压由专用触发器产生。  2.着火阶段:灯泡触发后,电极的放电电压进一步加热电极,形成辉光放电,并为弧光放电创造条件。  3.正常发光阶段:在辉光放电的作用下,电极温度越来越高,发射的电子数量越来越多,迅速过渡到弧光放电。随着温度进一步升高,灯的发光越来越强直到正常,全部过程需一分多钟,如果启动电流大,电源启动性能好,此过程可短些。
金卤灯(Metal  Halide  Lamp)是交流电源工作的,在汞和稀有金属的卤化物混合蒸气中产生电弧放电发光的放电灯,金属卤化物灯是在高压汞灯基础上添加各种金属卤化物制成的第三代光源。照明采用钪钠型金属卤化物灯,该灯具有发光效率高、显色性能好、寿命长等特点,是一种接近日光色的节能新光源,广泛应用于体育场馆、展览中心、大型商场、工业厂房、街道广场、车站、码头等场所的室内照明。  工作原理  电弧管内充有汞、惰性气体和一种以上的金属卤化物。工作时,汞蒸发,电弧管内汞蒸气压金卤灯达几个大气压(零点几个兆帕);卤化物也从管壁上蒸发,扩散进入高温电弧柱内分解,金属原子被电离激发,辐射出特征谱线。当金属离子扩散返回管壁时,在靠近管壁的较冷区域中与卤原子相遇,并且重新结合生成卤化物分子。这种循环过程不断地向电弧提供金属蒸气。电弧轴心处的金属蒸气分压与管壁处卤化物蒸气的分压相近,一般为  1330~13300Pa。通常采用的金属平均激发电位为4eV左右,而汞的激发电位为7.8eV。金属光谱的总辐射功率可以大幅度超过汞的辐射功率。结果,典型的金属卤化物灯输出的谱线主要是金属光谱。充填不同种金属卤化物可改善灯的显色性(平均显色指数Ra为70~95)。汞电弧总辐射中仅有23%在可见光区域内,而金属卤化物电弧的总辐射则有50%以上在可见光区域内,灯的发光效率可高达120lm/W以上。  金属卤化物与电极、石英玻璃之间以及卤化物相互之间在高温下都会引起化学反应。金属卤化物容易潮解,极少量水的吸入可造成放电不正常,使灯管发黑。电极电子发射物质系采用氧化镝、氧化钇、氧化钪等,以防止发射物质与卤素发生反应。电弧管内有些金属(如钠)会迁移,结果会使卤素过量,导致卤素负电性极强,引起电弧收缩和启动电压、工作电压升高。金属卤化物灯仅靠触发电极的作用是不能可靠启动的,一般采用双金属片启动器,或者采用有足够高启动电压的漏磁变压器,也有采用电子触发器的。金属卤化物灯的点燃还需要限流器(即镇流器),其工作电流比同功率高压汞灯的要大一些。  发光过程  金卤灯内充有少量金属卤化物和气体,从触发到正常发光需一分多钟,大致分为三阶段。  1.触发阶段:金属卤化物灯内无灯丝,只有两个电极,直接加上工作电压不能点燃,必须先加高压使灯内气体电离。高压由专用触发器产生。  2.着火阶段:灯泡触发后,电极的放电电压进一步加热电极,形成辉光放电,并为弧光放电创造条件。  3.正常发光阶段:在辉光放电的作用下,电极温度越来越高,发射的电子数量越来越多,迅速过渡到弧光放电。随着温度进一步升高,灯的发光越来越强直到正常,全部过程需一分多钟,如果启动电流大,电源启动性能好,此过程可短些。
人在驴途 2024-05-11

扩展回答

热门问答

装修专题

页面运行时间: 0.23492193222046 秒