780nm激光器原理是什么

2024-05-11 15:57:04 (39分钟前 更新) 448 8624

最新回答

半导体激光器的原理及应用  摘要:半导体激光器的发展迅速,以其独特的性能及优点获得了广泛的应用.  本  文介半绍了半导体激光器的原理、结构、进展。还介绍了半导体激光器在激光测距、激光引信、激光制导跟踪、激光瞄准和告警、激光通信、光纤陀螺以及国民经济等各个领域中的应用。大功率半导体激光器在军事领域和工业领域有着广泛的应用。  关键词:半导体激光器  原理与应用  未来前景  半导体激光器是以半导体材料(主要是化合物半导体)作为工作物质,以电流注入作为激励方式的一种小型化激光器。世界上的第一台半导体激光器是同质结的,即和普通的p—n结极管一样。这种同质结激光器有源区的厚度为电子扩散长度量级(微米量级),阈值电流密度需达到105A/cm2,因此只能在液氮温度(77K)和脉冲状态下工作。  半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成,最先出现的是单异质结构激光器(1969年)。单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作。  1970年,双异质结激光器(DHL)利用波段不断拓宽,线宽和调谐性能逐步提高,在P型和n型材料之间生长了仅有0.2Eam厚的,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转.在半导体激光器件中,实现了激光波长为9000&Aring。室温连续工作的双异质结砷化稼一稼铝砷激光器。  1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能。后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器。  20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器。另一类是以提高光功率为目的的功率型激光器。20世纪90年代,连续输出功率在100以上,脉冲输出功率在5W以上的高功率半导体激光器取得了突破性进展。
半导体激光器的原理及应用  摘要:半导体激光器的发展迅速,以其独特的性能及优点获得了广泛的应用.  本  文介半绍了半导体激光器的原理、结构、进展。还介绍了半导体激光器在激光测距、激光引信、激光制导跟踪、激光瞄准和告警、激光通信、光纤陀螺以及国民经济等各个领域中的应用。大功率半导体激光器在军事领域和工业领域有着广泛的应用。  关键词:半导体激光器  原理与应用  未来前景  半导体激光器是以半导体材料(主要是化合物半导体)作为工作物质,以电流注入作为激励方式的一种小型化激光器。世界上的第一台半导体激光器是同质结的,即和普通的p—n结极管一样。这种同质结激光器有源区的厚度为电子扩散长度量级(微米量级),阈值电流密度需达到105A/cm2,因此只能在液氮温度(77K)和脉冲状态下工作。  半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAlAs所组成,最先出现的是单异质结构激光器(1969年)。单异质结注人型激光器(SHLD)是利用异质结提供的势垒把注入电子限制在GaAsP一N结的P区之内,以此来降低阀值电流密度,其数值比同质结激光器降低了一个数量级,但单异质结激光器仍不能在室温下连续工作。  1970年,双异质结激光器(DHL)利用波段不断拓宽,线宽和调谐性能逐步提高,在P型和n型材料之间生长了仅有0.2Eam厚的,不掺杂的,具有较窄能隙材料的一个薄层,因此注人的载流子被限制在该区域内(有源区),因而注人较少的电流就可以实现载流子数的反转.在半导体激光器件中,实现了激光波长为9000&Aring。室温连续工作的双异质结砷化稼一稼铝砷激光器。  1978年出现了世界上第一只半导体量子阱激光器(QWL),它大幅度地提高了半导体激光器的各种性能。后来,又由于MOCVD,MBE生长技术的成熟,能生长出高质量超精细薄层材料,之后,便成功地研制出了性能更加良好的量子阱激光器。  20世纪70年代末开始,半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器。另一类是以提高光功率为目的的功率型激光器。20世纪90年代,连续输出功率在100以上,脉冲输出功率在5W以上的高功率半导体激光器取得了突破性进展。
南瓜冰妈 2024-05-11
激光器原理:产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔(  见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。
激光器原理:产生激光的必不可少的条件是粒子数反转和增益大于损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。激光器中常见的组成部分还有谐振腔,但谐振腔(  见光学谐振腔)并非必不可少的组成部分,谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的方向性和相干性。而且,它可以很好地缩短工作物质的长度,还能通过改变谐振腔长度来调节所产生激光的模式(即选模),所以一般激光器都具有谐振腔。
jingbin657501 2024-04-28
工作原理是:掺铒光纤放大器产生光谱放大自发辐射(ASE)信号,ASE信号通过OLT到达AWG,被AWG进行光谱分割后产生多个窄带信号,这些信号被注入不同的ONU的同一类型FP激光器中,迫使FP激光器产生单波长模式,抑制了多波长模式的产生。最新的产品可支持16个WDM信道,信道间隔为200  GHz,每信道速率为1.25  Gbit/s,可支持大约21  dB的ODN链路预算。
工作原理是:掺铒光纤放大器产生光谱放大自发辐射(ASE)信号,ASE信号通过OLT到达AWG,被AWG进行光谱分割后产生多个窄带信号,这些信号被注入不同的ONU的同一类型FP激光器中,迫使FP激光器产生单波长模式,抑制了多波长模式的产生。最新的产品可支持16个WDM信道,信道间隔为200  GHz,每信道速率为1.25  Gbit/s,可支持大约21  dB的ODN链路预算。
S素年錦時 2024-04-16

扩展回答

热门问答

装修专题

页面运行时间: 0.29218196868896 秒