陶瓷螺纹怎么加工

2024-06-01 07:56:32 (27分钟前 更新) 517 2958

最新回答

分类评述了各种陶瓷材料加工技术的发展概况及应用特点。一、引  言陶瓷材料具有高强度、高硬度、低密度、低膨胀系数以及耐磨、耐腐蚀、隔热
分类评述了各种陶瓷材料加工技术的发展概况及应用特点。一、引  言陶瓷材料具有高强度、高硬度、低密度、低膨胀系数以及耐磨、耐腐蚀、隔热
吃蛋糕的鱼 2024-06-01
现加工精度可达到在陶瓷上可加工¢0.5*20mm内孔;直槽最窄可加工槽宽0.1*100mm;外形尺寸可加工精度±0.002mm;厚度尺寸最小可加工至0.1mm;平行度±0.002mm;可在硬质合金、陶瓷上加工M4以上内外螺纹。现加工精度可达到在陶瓷上可加工¢0.5*20mm内孔;直槽最窄可加工槽宽0.1*100mm;外形尺寸可加工精度±0.002mm;厚度尺寸最小可加工至0.1mm;平行度±0.002mm;可在硬质合金、陶瓷上加工M4以上内外螺纹。
现加工精度可达到在陶瓷上可加工¢0.5*20mm内孔;直槽最窄可加工槽宽0.1*100mm;外形尺寸可加工精度±0.002mm;厚度尺寸最小可加工至0.1mm;平行度±0.002mm;可在硬质合金、陶瓷上加工M4以上内外螺纹。现加工精度可达到在陶瓷上可加工¢0.5*20mm内孔;直槽最窄可加工槽宽0.1*100mm;外形尺寸可加工精度±0.002mm;厚度尺寸最小可加工至0.1mm;平行度±0.002mm;可在硬质合金、陶瓷上加工M4以上内外螺纹。
阿籽猫77 2024-05-29
陶瓷材料主要加工方法力学加工磨料加工研磨加工,抛光加工,砂带加工,滚筒加工,珩磨加工,超声加工,喷丸加工,粘弹性流动加工塑性加工金刚石塑性加工,金刚石塑性磨削电加工电火花加工,电子束加工,离子束加工,等离子束加工复合加工光刻加工,  ELID磨削,超声波磨削,超声波研磨,超声波电火花加工化学加工腐蚀加工,化学研磨加工光学加工激光加工切削加工  陶瓷材料的切削加工不仅适用于半烧结体陶瓷,也适用于完全烧结体陶瓷。半烧结体陶瓷的切削加工是为了尽可能减少完全烧结体陶瓷的加工余量,从而提高加工效率,降低加工成本。日本的研究人员使用各种刀具在不同温度下对Al2O3陶瓷和Si3N4陶瓷半烧结体进行了切削试验。试验中根据不同的加工要求,采用了干式切削与湿式切削等方法,获得了有价值的研究成果。  国外一些研究者针对完全烧结体陶瓷的切削加工进行了试验研究。日本的研究人员在使用聚晶金刚石刀具对Al2O3陶瓷与Si3N4陶瓷进行切削试验时发现,粗粒聚晶金刚石刀具在切削过程中磨损较小,加工效果较好;在使用金刚石刀具切削ZrO2陶瓷时,达到了类似于切削金属时的效果。他们还探讨了陶瓷塑性切削极限问题,指出当Al2O3陶瓷的临界切削深度apmax=  2µm时,  SiC陶瓷的apmax=  1µm,  Si3N4陶瓷的apmax=  4µm(  ap>apmax时,陶瓷材料会产生脆性破坏;ap<  apmax时,则为塑性流动式切削)。美国的研究人员对单晶锗进行了一系列金刚石车削试验,成功地实现了脆性材料的塑性超精密车削,并提出了临界切削厚度的计算公式。用金刚石刀具切削脆性材料并获得高质量的加工表面是近十几年来发展起来的新技术,通常称为脆性材料的超精密车削加工。研磨、抛光加工  研磨、抛光加工是采用游离磨料对被加工表面材料产生微细去除作用以达到加工效果的一种超精加工方法。在陶瓷材料的超精加工与光整加工中,特别是在用于陶瓷轴承的陶瓷球的精密加工中,研磨、抛光加工有着不可替代的位置。光学玻璃、蓝宝石等光学材料,硅片、GaAs基片等半导体材料,Al2O3陶瓷、Si3N4陶瓷等陶瓷材料的镜面加工大多采用研磨、抛光加工方法。从材料的去除机理上看,研磨加工是介于脆性破坏与弹性去除之间的一种加工方法,而抛光加工基本上是在材料的弹性去除范围内进行。研磨、抛光加工由于材料去除量小,加工效率低,一般只用于超精加工的最终工序。研磨、抛光加工的材料去除率与被加工材料的韧性有较大关系,韧性越高,加工效率越低。ELID磨削加工  ELID磨削技术是由日本物理化学研究所的大森整等人于1987年提出的一种磨削新工艺,其基本原理是利用在线的电解作用对金属基砂轮进行修整,即在磨削过程中在砂轮和工具电极之间浇注电解磨削液并加以直流脉冲电流,使作为阳极的砂轮金属结合剂产生阳极溶解效应而被逐渐去除,使不受电解影响的磨料颗粒凸出砂轮表面,从而实现对砂轮的修整,并在加工过程中始终保持砂轮的锋锐性。ELID磨削技术成功地解决了金属基超硬磨料砂轮修整的难题,同时在线电解的微量修整作用使超细粒度砂轮在磨削过程中能保持锋锐性,为实现稳定的超精密磨削创造了有利条件。  日本的研究人员使用#8000(最大磨粒直径约为  2µ  m)铸铁基金刚石砂轮对硅片进行磨削,获得了最大表面粗糙度值为0.1µm的高精表面。使用青铜基砂轮对陶瓷材料进行精密磨削也达到了相同的加工效果。哈尔滨工业大学采用ELID磨削技术对硬质合金、陶瓷、光学玻璃等脆性材料实现了镜面磨削,磨削表面质量与在相同机床条件下采用普通砂轮磨削相比大幅度提高,部分工件的表面粗糙度Ra值已达到纳米级,其中硅微晶玻璃的磨削表面粗糙度可达Ra0.012µm。这表明ELID磨削技术可以实现对脆性材料表面的超精加工,但加工过程中仍存在砂轮表面氧化膜或砂轮表面层的未电解物质被压入工件表面而造成表面层釉化及电解磨削液配比改变等问题,有待于进一步研究解决。塑性法加工  传统的材料去除过程一般可分为脆性去除和塑性去除两种。在脆性去除过程中,材料去除是通过裂纹的扩展和交叉来完成的;而塑性去除则是以剪切加工切屑的形式来产生材料的塑性流。对于金属的加工,塑性切削机理很容易实现,而对于脆性材料如工程陶瓷和光学玻璃等,采用传统的加工技术及工艺参数只会导致脆性去除而没有显著的塑性流,在超过强度极限的切削力作用下,材料的大小粒子发生脆性断裂,这无疑将影响被加工表面的质量和完整性。由加工实践可知,在加工陶瓷等脆性材料时,可采用极小的切深来实现塑性去除,即材料去除机理可在微小去除条件下从脆性破坏向塑性变形转变。超精加工技术的最新进展已可将加工进给量控制在几个纳米,从而使脆性材料加工的主要去除机理有可能由脆性破坏转变为塑性流。塑性切屑变形过程可以显著降低次表面(表层)破坏,这种硬脆材料的新型加工技术称为塑性法加工
陶瓷材料主要加工方法力学加工磨料加工研磨加工,抛光加工,砂带加工,滚筒加工,珩磨加工,超声加工,喷丸加工,粘弹性流动加工塑性加工金刚石塑性加工,金刚石塑性磨削电加工电火花加工,电子束加工,离子束加工,等离子束加工复合加工光刻加工,  ELID磨削,超声波磨削,超声波研磨,超声波电火花加工化学加工腐蚀加工,化学研磨加工光学加工激光加工切削加工  陶瓷材料的切削加工不仅适用于半烧结体陶瓷,也适用于完全烧结体陶瓷。半烧结体陶瓷的切削加工是为了尽可能减少完全烧结体陶瓷的加工余量,从而提高加工效率,降低加工成本。日本的研究人员使用各种刀具在不同温度下对Al2O3陶瓷和Si3N4陶瓷半烧结体进行了切削试验。试验中根据不同的加工要求,采用了干式切削与湿式切削等方法,获得了有价值的研究成果。  国外一些研究者针对完全烧结体陶瓷的切削加工进行了试验研究。日本的研究人员在使用聚晶金刚石刀具对Al2O3陶瓷与Si3N4陶瓷进行切削试验时发现,粗粒聚晶金刚石刀具在切削过程中磨损较小,加工效果较好;在使用金刚石刀具切削ZrO2陶瓷时,达到了类似于切削金属时的效果。他们还探讨了陶瓷塑性切削极限问题,指出当Al2O3陶瓷的临界切削深度apmax=  2µm时,  SiC陶瓷的apmax=  1µm,  Si3N4陶瓷的apmax=  4µm(  ap>apmax时,陶瓷材料会产生脆性破坏;ap<  apmax时,则为塑性流动式切削)。美国的研究人员对单晶锗进行了一系列金刚石车削试验,成功地实现了脆性材料的塑性超精密车削,并提出了临界切削厚度的计算公式。用金刚石刀具切削脆性材料并获得高质量的加工表面是近十几年来发展起来的新技术,通常称为脆性材料的超精密车削加工。研磨、抛光加工  研磨、抛光加工是采用游离磨料对被加工表面材料产生微细去除作用以达到加工效果的一种超精加工方法。在陶瓷材料的超精加工与光整加工中,特别是在用于陶瓷轴承的陶瓷球的精密加工中,研磨、抛光加工有着不可替代的位置。光学玻璃、蓝宝石等光学材料,硅片、GaAs基片等半导体材料,Al2O3陶瓷、Si3N4陶瓷等陶瓷材料的镜面加工大多采用研磨、抛光加工方法。从材料的去除机理上看,研磨加工是介于脆性破坏与弹性去除之间的一种加工方法,而抛光加工基本上是在材料的弹性去除范围内进行。研磨、抛光加工由于材料去除量小,加工效率低,一般只用于超精加工的最终工序。研磨、抛光加工的材料去除率与被加工材料的韧性有较大关系,韧性越高,加工效率越低。ELID磨削加工  ELID磨削技术是由日本物理化学研究所的大森整等人于1987年提出的一种磨削新工艺,其基本原理是利用在线的电解作用对金属基砂轮进行修整,即在磨削过程中在砂轮和工具电极之间浇注电解磨削液并加以直流脉冲电流,使作为阳极的砂轮金属结合剂产生阳极溶解效应而被逐渐去除,使不受电解影响的磨料颗粒凸出砂轮表面,从而实现对砂轮的修整,并在加工过程中始终保持砂轮的锋锐性。ELID磨削技术成功地解决了金属基超硬磨料砂轮修整的难题,同时在线电解的微量修整作用使超细粒度砂轮在磨削过程中能保持锋锐性,为实现稳定的超精密磨削创造了有利条件。  日本的研究人员使用#8000(最大磨粒直径约为  2µ  m)铸铁基金刚石砂轮对硅片进行磨削,获得了最大表面粗糙度值为0.1µm的高精表面。使用青铜基砂轮对陶瓷材料进行精密磨削也达到了相同的加工效果。哈尔滨工业大学采用ELID磨削技术对硬质合金、陶瓷、光学玻璃等脆性材料实现了镜面磨削,磨削表面质量与在相同机床条件下采用普通砂轮磨削相比大幅度提高,部分工件的表面粗糙度Ra值已达到纳米级,其中硅微晶玻璃的磨削表面粗糙度可达Ra0.012µm。这表明ELID磨削技术可以实现对脆性材料表面的超精加工,但加工过程中仍存在砂轮表面氧化膜或砂轮表面层的未电解物质被压入工件表面而造成表面层釉化及电解磨削液配比改变等问题,有待于进一步研究解决。塑性法加工  传统的材料去除过程一般可分为脆性去除和塑性去除两种。在脆性去除过程中,材料去除是通过裂纹的扩展和交叉来完成的;而塑性去除则是以剪切加工切屑的形式来产生材料的塑性流。对于金属的加工,塑性切削机理很容易实现,而对于脆性材料如工程陶瓷和光学玻璃等,采用传统的加工技术及工艺参数只会导致脆性去除而没有显著的塑性流,在超过强度极限的切削力作用下,材料的大小粒子发生脆性断裂,这无疑将影响被加工表面的质量和完整性。由加工实践可知,在加工陶瓷等脆性材料时,可采用极小的切深来实现塑性去除,即材料去除机理可在微小去除条件下从脆性破坏向塑性变形转变。超精加工技术的最新进展已可将加工进给量控制在几个纳米,从而使脆性材料加工的主要去除机理有可能由脆性破坏转变为塑性流。塑性切屑变形过程可以显著降低次表面(表层)破坏,这种硬脆材料的新型加工技术称为塑性法加工
beibeidesignwang 2024-05-21
陶瓷里的螺纹是在制作磁模的料胚时,由磁模的型芯形成的。这个就像塑料模具的螺纹孔的形成是由螺纹型芯成形是一样的。
陶瓷里的螺纹是在制作磁模的料胚时,由磁模的型芯形成的。这个就像塑料模具的螺纹孔的形成是由螺纹型芯成形是一样的。
大睿2010 2024-05-07
陶瓷里的螺纹是在制作磁模的料胚时,由磁模的型芯形成的。这个就像塑料模具的螺纹孔的形成是由螺纹型芯成形是一样的。
陶瓷里的螺纹是在制作磁模的料胚时,由磁模的型芯形成的。这个就像塑料模具的螺纹孔的形成是由螺纹型芯成形是一样的。
多儿的妈咪 2024-05-01
我看应该是在烧结前就加工好螺纹。有些螺纹口的瓷壶就是如此。高频加工,详细可以咨询德马吉  磨削,具体使用什么砂轮不详,但无非就是CBN砂轮或者金刚石砂轮。  据说有能车削的,但是我没见过。
我看应该是在烧结前就加工好螺纹。有些螺纹口的瓷壶就是如此。高频加工,详细可以咨询德马吉  磨削,具体使用什么砂轮不详,但无非就是CBN砂轮或者金刚石砂轮。  据说有能车削的,但是我没见过。
天使之懿727 2024-04-21

扩展回答

热门问答

装修专题

页面运行时间: 0.10839295387268 秒